skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhao, Chen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Online Anomaly Detection (OAD) is critical for identifying rare yet important data points in large, dynamic, and complex data streams. A key challenge lies in achieving accurate and consistent detection of anomalies while maintaining computational and memory efficiency. Conventional OAD approaches, which depend on distributional deviations and static thresholds, struggle with model update delays and catastrophic forgetting, leading to missed detections and high false positive rates. To address these limitations, we propose a novel Streaming Anomaly Detection (SAD) method, grounded in a sparse active online learning framework. Our approach uniquely integrates ℓ1,2-norm sparse online learning with CUR decomposition-based active learning, enabling simultaneous fast feature selection and dynamic instance selection. The efficient CUR decomposition further supports real-time residual analysis for anomaly scoring, eliminating the need for manual threshold settings about temporal data distributions. Extensive experiments on diverse streaming datasets demonstrate SAD's superiority, achieving a 14.06% reduction in detection error rates compared to five state-of-the-art competitors. 
    more » « less
  2. Group Fairness-aware Continual Learning (GFCL) aims to eradicate discriminatory predictions against certain demographic groups in a sequence of diverse learning tasks.This paper explores an even more challenging GFCL problem – how to sustain a fair classifier across a sequence of tasks with covariate shifts and unlabeled data. We propose the MacFRL solution, with its key idea to optimizethe sequence of learning tasks. We hypothesize that high-confident learning can be enabled in the optimized task sequence, where the classifier learns from a set of prioritized tasks to glean knowledge, thereby becoming more capable to handle the tasks with substantial distribution shifts that were originally deferred. Theoretical and empirical studies substantiate that MacFRL excels among its GFCL competitors in terms of prediction accuracy and group fair-ness metrics. 
    more » « less
  3. Diffusion probabilistic models (DPMs) have become the state-of-the-art in high-quality image generation. However, DPMs have an arbitrary noisy latent space with no interpretable or controllable semantics. Although there has been significant research effort to improve image sample quality, there is little work on representation-controlled generation using diffusion models. Specifically, causal modeling and controllable counterfactual generation using DPMs is an underexplored area. In this work, we propose CausalDiffAE, a diffusion-based causal representation learning framework to enable counterfactual generation according to a specified causal model. Our key idea is to use an encoder to extract high-level semantically meaningful causal variables from high-dimensional data and model stochastic variation using reverse diffusion. We propose a causal encoding mechanism that maps high-dimensional data to causally related latent factors and parameterize the causal mechanisms among latent factors using neural networks. To enforce the disentanglement of causal variables, we formulate a variational objective and leverage auxiliary label information in a prior to regularize the latent space. We propose a DDIM-based counterfactual generation procedure subject to do-interventions. Finally, to address the limited label supervision scenario, we also study the application of CausalDiffAE when a part of the training data is unlabeled, which also enables granular control over the strength of interventions in generating counterfactuals during inference. We empirically show that CausalDiffAE learns a disentangled latent space and is capable of generating high-quality counterfactual images. 
    more » « less
  4. Abstract Recent immersive mixed reality (MR) and virtual reality (VR) displays enable users to use their hands to interact with both veridical and virtual environments simultaneously. Therefore, it becomes important to understand the performance of human hand-reaching movement in MR. Studies have shown that different virtual environment visualization modalities can affect point-to-point reaching performance using a stylus, but it is not yet known if these effects translate to direct human-hand interactions in mixed reality. This paper focuses on evaluating human point-to-point motor performance in MR and VR for both finger-pointing and cup-placement tasks. Six performance measures relevant to haptic interface design were measured for both tasks under several different visualization conditions (“MR with indicator,” “MR without indicator,” and “VR”) to determine what factors contribute to hand-reaching performance. A key finding was evidence of a trade-off between reaching “motion confidence” measures (indicated by throughput, number of corrective movements, and peak velocity) and “accuracy” measures (indicated by end-point error and initial movement error). Specifically, we observed that participants tended to be more confident in the “MR without Indicator” condition for finger-pointing tasks. These results contribute critical knowledge to inform the design of VR/MR interfaces based on the application's user performance requirements. 
    more » « less